Q.P. Code: 18EE0202

			197	14					No:	Reg. N
--	--	--	-----	----	--	--	--	--	-----	--------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations November-2020 ELECTRICAL CIRCUITS-II

(Electrical & Electronics Engineering)

Time: 3 hours

PART-A

Max.	Mark	s: 60)
11100211	1 main		'

	(Answer all the Questions $5 \times 2 = 10$ Marks)	
L	a Differentiate balanced and unbalanced circuits.	2M
	b Draw the DC response of R-L circuit and the response curve.	2M
	c Define tree.	2M
	d State reciprocity theorem.	2M
	e Summarize some of the properties of Laplace Transform.	2M
	PART-B	

(Answer all Five Units $5 \ge 10 = 50$ Marks)

UNIT-I

2 An unbalanced 4 wire star connected load has a balanced voltage of 400V. The load are $Z_1 = (4+j8) \Omega$, $Z_2 = (5+j4)\Omega$, $Z_3 = (15+j20)\Omega$. Calculate line currents, current in neutral wire, total power.

OR

3 A 400V, 3Φ supply feeds an unbalanced 3 wire star connected 3 wire, star connected 10M load. The branch impedances of the load are $Z_R = (4+j8) \Omega$, $Z_Y = (3+j4) \Omega$, $Z_B = (5+j20) \Omega$. Find the line currents and voltages across phase impedance. Assume RYB phase sequence.

	UNIT-II a a la regregera pelucipal biola poli de P	
4	Derive the transient response of an RLC circuit with AC excitation.	10M
	OR	
5	Derive the transient response of an RC circuit with DC excitation.	10M
	UNIT-III	
6	Determine i_x for the following network using network topology.	10M

OR

7 Find voltage V for the circuit shown below which makes the current in the 10Ω resistor **10M** is zero by using nodal analysis using network topology.

Page 1 of 2

UNIT-IV

8 Obtain the T parameters of the following two-port network.

9 Obtain h and g parameters of following two port network.

10 The unit impulse response of a circuit is $v_o(t) = 10,000e^{-70t} \cos(240t + \theta)u(t)V$ Where $\tan\theta = \frac{7}{24}$.

(i) Find the transfer function of the circuit.(ii) Find the unit step response of the circuit.

- OR
- 11 Derive the numerical expression for the transfer function v_o/I_g for the circuit shown 10M below.

END

10M

10M

R18

10M